関係都県廃棄物行政主管部 (局) 御中

環境省大臣官房廃棄物・リサイクル対策部 廃棄物対策課 産業廃棄物課適正処理・不法投棄対策室

一般廃棄物焼却施設における焼却灰の測定及び当面の取扱いについて

東京都の一般廃棄物焼却施設の飛灰から 8,000Bq/kg を超える放射性セシウム (セシウム 134 及びセシウム 137) が検出されたことから、東北地方及び関東地 方等の一般廃棄物焼却施設における焼却灰(主灰及び飛灰)の測定を要請する とともに、当面の取扱いについてお知らせする。各都県においては、その内容 につき御理解の上、管内市町村等への周知方よろしくお願いする。

また、「福島県内の災害廃棄物の処理の方針」(平成23年6月23日)を別添資料として添付するので、併せて御参照いただきたい。

(1) 焼却灰の測定

すべての一般廃棄物焼却施設の飛灰に含まれる放射性セシウムの濃度を測定する。参考として、同時に主灰についても測定することが望ましい。なお、飛灰が 8,000Bq/kg を超えるおそれがある場合には、主灰の測定を行う。

また、測定結果が 8,000Bq/kg を超えた場合、又は 8,000Bq/kg に近い値となった場合は、一定の間隔(1 τ 月程度)をおいて、測定を継続することが望ましい

なお、環境省では、測定結果を取りまとめの上、公表することを予定している。管内市町村等において測定を実施する日を予め定め、各都県で取りまとめの上、環境省担当までその日程を7月8日までにFAX 又はメールで報告をお願いする。その後、管内市町村等において測定結果が確認でき次第、別紙様式により、各都県で取りまとめの上、環境省担当まで提出をお願いする。

(2) 当面の取扱い

今回の東京二十三区清掃一部事務組合による焼却灰の放射能濃度の調査の結果を受け、環境省において早急に焼却灰の処理方法を検討することとしている。 検討結果がまとめられるまでの間、焼却灰の取扱いは下記のとおりとする。

- ア 8,000Bq/kg を超える主灰又は飛灰については、一般廃棄物最終処分場(管理型最終処分場)に場所を定めて、一時保管する。一時保管の方法は、「福島県内の災害廃棄物の処理の方針」(平成23年6月23日)に準拠する。
- イ 8,000Bq/kg以下の主灰又は飛灰については、一般廃棄物最終処分場(管理型最終処分場)に、埋立処分する。念のための措置として、可能な限り、飛灰と主灰の埋立場所を分け、それぞれの埋立場所が特定できるように措置する。
- ウ また、8,000Bq/kg を超える主灰又は飛灰が確認された場合は、一時保管場所付近での空間線量率及び埋立地の排水のモニタリングを実施する。
- エ 埋め立てた主灰又は飛灰の濃度レベルによって、跡地利用に制限がかかる場合がある。
 - (参考)「福島県内の災害廃棄物の処理の方針」に定める一般廃棄物最終処分場(管理型最終処分場)での一時保管の基準
 - 1 埋立場所を他の廃棄物と分け、埋立場所を記録する。
 - 2 土壌 (ベントナイト等) で 30cm 程度の隔離層を設けたうえで、耐水 性材料で梱包等した飛灰を置く。
 - 3 雨水浸入防止のための遮水シート等で覆う、あるいはテントや屋根 等で被覆する。
 - 4 即日覆土を行う。

(3) 作業者の安全確保

一般廃棄物に放射性セシウムが含まれている場合、焼却に伴い、主灰又は飛灰に濃縮されるので、その濃度レベルによっては主灰又は飛灰を取り扱う作業者の安全について注意が必要となる場合がある。その目安として次のふたつがある。

- ア.「福島県内の災害廃棄物の処理の方針」において、作業者の安全も確保されるレベルとして示した 8,000Bq/kg
- イ. 電離放射線障害防止規則(電離則)の適用対象となる放射性セシウムの 濃度(10,000Bq/kg)

8,000Bq/kg を超える場合には、埋立作業に当たってできるだけ頻繁に覆土を行うことが望ましい。また、10,000Bq/kg を超える場合には、電離則に従って作業者の安全を確保することとする。

<提出先>

環境省廃棄物・リサイクル対策部

産業廃棄物課適正処理・不法投棄対策室 担当:野本、岩川、清水

電話:03-5501-3157 FAX:03-3593-8264

Email: hairi-tekisei@env.go.jp

<連絡先>

環境省廃棄物・リサイクル対策部

産業廃棄物課適正処理・不法投棄対策室 担当:野本、岩川、清水

電話:03-5501-3157 FAX:03-3593-8264

Email: hairi-tekisei@env.go.jp

廃棄物対策課 担当:敷田、豊村

電話:03-5501-3154 FAX:03-3593-8263

都・県

	都・県											
市町村	測定施設	住所	測定	測定	測	定	結	果	検	出	限	界
等名	名		日 内容 [Bq/kg]		[Bq/kg]		为容 【Bq/kg】 【Bc		q/kg]			
							セ				セ	シ
					ウ	A	ウ	L	ウ	ム	ウ	L
					134	Į	13'	7	134	Į.	13'	7
						_						

○○県

市町村	測定施設	住所	測定	測定	測定	結 果	検 出	限 界
等名	名		日	内容	[Bq/kg	[Bq/kg]		
					セシ	セシ	セシ	セシ
					ウム	ウム	ウム	ウム
					134	137	134	137
〇〇市	○○クリ	〇〇市〇	7/1	飛灰	8.1 ×	8.1 ×	1.0 ×	1.0 ×
	ーンセン	○町□□			10^{2}	10^{2}	10^2	10^{2}
	ター	番地						
同上	同上	同上	7/1	主灰	8.1 ×	8.1 ×	1.0 ×	1.0 ×
					10^{1}	10^{1}	10^{2}	10^{2}
$\triangle \triangle -$	00	○○町□	7/4	飛灰	4.1 ×	4.1 ×	1.0 ×	1.0 ×
部事務		□番地			10^{3}	10^{3}	10^{2}	10^{2}
組合(○								
○町、□								
□村、▲								
▲町)		_						
•••								

福島県内の災害廃棄物の処理の方針

平成23年6月23日 環 境 省

原子力発電所の事故に伴って放出された放射性物質により汚染されたおそれのある福島県内の災害廃棄物については、平成23年6月19日に災害廃棄物安全評価検討会がとりまとめた「放射性物質により汚染されたおそれのある災害廃棄物の処理の方針」を踏まえ、次のとおり処理を進めることとする。

なお、検討会では、想定される処理方法及び放射性物質が影響を及ぼす可能性のある経路を設定し、環境省及び原子力安全・保安院が行った現地調査の結果等を踏まえ、支配的な核種と考えられるセシウム 134 及びセシウム 137 が周辺住民及び作業者に及ぼす影響を算定した。この算定の結果を、6月3日に原子力安全委員会によって決定された「東京電力株式会社福島第一原子力発電所事故の影響を受けた廃棄物の処理処分等に関する安全確保の当面の考え方」(以下、「原子力安全委員会決定」という。)に示された考え方と比較検討することにより安全評価を行い、処理の方針のとりまとめを行った。

- (注1)対象となる地域には、避難区域、計画的避難区域、会津地方及び5月27日に 処理を再開することとした10町村を含まない。
- (注2)この資料で使用する「処理」は廃棄物処理法の「処理」と同じ意味であり、「処分」や「再生利用」を含んでいる。

1. 基本的な考え方

放射性物質により汚染されたおそれのある災害廃棄物の処理に当たっては、原子力安全委員会決定を踏まえ、焼却施設や最終処分場の周辺住民や作業者の安全を確保することを大前提とする。その上で、災害廃棄物の発生量が膨大であることから、可能な範囲で焼却や再生利用を行うことにより、埋立処分量をできるだけ減少させることが望ましい。

災害廃棄物の汚染の程度が高いものがあることやばらつきが大きいことなどによって既存の調査結果から直ちに原子力安全委員会決定に定める「めやす」 を満足することを示すことができない場合や、長期的な安全性を確保できない おそれがある場合には、適切な方法で一時保管を行いつつ、国において速やか に安全な処分方法を検討する。

また、念のための措置として、処理施設周辺の空間線量率や地下水、処理施設から排出される排ガス、排水等などのモニタリングを継続して行う。さらに、クリアランスレベルと同程度以下のものを別として、当面の間、福島県内で処理を行いつつ、関係者間の調整を進めるものとする。

2. 可燃物の焼却について

木くず等の可燃物について、十分な能力を有する排ガス処理装置が設置されている施設で焼却処理が行われる場合には、安全に処理を行うことが可能である。

具体的には、排ガス処理装置としてバグフィルター及び排ガス吸着能力を有している施設では焼却可能である。また、電気集塵機など他の排ガス処理装置を設置している施設については、試験的に災害廃棄物を焼却して排ガス中の放射性物質の濃度を測定するなどによって、安全性を検討することとする。

(注) バグフィルターに活性炭などの吸着性能を有する物質の吹込装置が設けられている場合は焼却可能である。また、バグフィルターに加えて湿式の排煙脱硫装置などの湿式排ガス処理装置が設けられている場合も焼却可能と考えられる。

3. 焼却に伴って発生する主灰及び飛灰の取扱いについて

木くず等の可燃物の焼却に伴って発生する主灰及び飛灰については、作業者の被ばく対策を講じるとともに、跡地の利用を制限することにより、安全な埋立処分が可能である。一方、個々に条件が異なる埋立処分された場所において長期的な管理が必要であり環境保全のあり方について検証が必要なことに鑑み、当面、下記によることとする。

(1) 主灰

放射性セシウム濃度(セシウム 134 とセシウム 137 の合計値。以下同じ。)が 8,000Bq/kg 以下である主灰は、一般廃棄物最終処分場(管理型最終処分場)に おける埋立処分を可能とする。ここで放射性セシウム濃度の目安 8,000Bq/kg は、埋立作業者の安全も確保される濃度レベルであり、原子力災害対策本部において別途検討された上下水処理等副次産物の取扱いと同じである。また、100,000Bq/kg を超える場合には、上下水処理等副次産物の取扱いと同様に、適切に放射線を遮へいできる施設で保管することが望ましい。

なお、主灰の放射性セシウム濃度は、焼却前の可燃物の放射性セシウム濃度 のほか、災害廃棄物以外の廃棄物との混焼割合の影響も受けると考えられる。 埋立処分に当たっては、念のために埋立場所を他の廃棄物と分離し、埋立場所を記録しておくこととする。また、埋め立てる主灰と保有水等集排水設備との間に土壌の層が存在するようにする。埋立処分終了後の跡地については、十分な安全性が確認されない限り、居住等の用途に供することは避けることとする。

放射性セシウム濃度が 8,000Bq/kg を超える場合は、埋立処分するのではなく、埋め立てられた主灰中の放射性セシウムの挙動を適切に把握し、国によって処分の安全性が確認されるまでの間、一時保管とすることが適当である。一時保管は、最終処分の前の処理の段階であり、次の①又は②によることとする。

- ① 放射線を遮へいできる場所におけるドラム缶等での保管
- ② 一般廃棄物最終処分場(管理型最終処分場)での保管
 - ア. 埋立場所を他の廃棄物と分け、埋立場所を記録する。
 - イ. 土壌 (ベントナイト等) で 30cm 程度の隔離層を設けたうえで、耐水性 材料で梱包等した主灰を置く。
 - ウ. 雨水浸入防止のための遮水シート等で覆う、あるいはテントや屋根等 で被覆する。
 - エ. 即日覆土を行う。

一時保管の場合、放射性物質による作業者への影響を抑制するため、一日の作業終了後の覆土である即日覆土ではなく、より頻繁な覆土を行うことが望ましい。また、それぞれの作業者の主灰を扱う作業時間を制限することが必要となる場合もある。(安全評価においては、覆土の方法は中間覆土、作業時間は1日8時間、年間250日の労働時間のうち半分の時間を主灰のそばで作業すると仮定した。)

また、一時保管の場所は、周辺の居住地域から適切な距離をとることとする。 (巻末の参考5を参照)

(2) 飛灰

集塵機から排出される飛灰は、主灰以上に放射性セシウムが濃縮されやすい。 また、飛灰に含まれる放射性セシウムは水に溶出しやすいという報告がある。

このため、飛灰については、放射性セシウム濃度が 8,000 Bq/kg を超える主灰と同様に、国によって処分の安全性が確認されるまでの間、一時保管とすることが適当であり、100,000Bq/kg を超える場合には、適切に放射線を遮へいできる施設で保管することが望ましい。

また、焼却灰の溶融処理で発生する飛灰も、同様に一時保管とすることが適

当である。溶融スラグについても一時保管とすることを原則とするが、8,000 Bg/kg 以下であることが確認された場合は埋立処分が可能である。

4. 不燃物等の直接埋立てについて

不燃物等の災害廃棄物をそのまま又は破砕して安全に埋立処分することが可能である。この場合の埋立処分の方法や跡地の利用に関しては、8,000 Bq/kg 以下の主灰の場合と同様である。

埋立作業者への影響に関しては、通常の廃棄物を扱う場合と同様にマスク等の着用が必要であるが、放射性物質による影響に着目した特別な対策は不要と考えられる。

5. 再生利用について

今回の原子力発電所事故の影響を受けて放射性物質により汚染されたおそれのある災害廃棄物であっても、市場に流通する前にクリアランスレベルの設定に用いた基準 $(10\,\mu\,\mathrm{Sv}/\mathrm{F})$ 以下になるよう、放射性物質の濃度が適切に管理されていれば再生利用が可能である。

また、利用する時点でクリアランスレベルを超える場合であっても、被ばく線量を 10 μ Sv/年以下に低くするための対策を講じつつ、管理された状態で利用することは可能と考えられる。ここで管理された状態での利用とは、公共用地において路盤材など土木資材として活用する方法が考えられるが、被ばく線量を抑制するため、覆土を行って地表に露出しない方法での使用とすべきである。

放射性物質によって汚染されたおそれのある金属は、汚染がある場合でも金属の表面に留まることから、水などによって表面の汚染を十分に除去することにより、利用できる可能性がある。また、仮置き場に搬出されるまで屋内に置かれていたものについても、利用可能と考えられる。他方、放射性物質による汚染のおそれがあるコンクリートくずを破砕して直接居住用建物のコンクリート壁材等に使用することは、安全性が確認されない限り避けるべきである。

その他の方法の利用の可否や、除染を行ったうえでの利用の方法等について、 さらに検討が必要である。

6. 必要な調査について

今回、国が行った現地調査の結果等を踏まえ、想定される処理方法及び放射性物質が影響を及ぼす可能性のある経路を設定して安全評価を実施し、その結果を踏まえて、災害廃棄物の処理の方針を取りまとめたところであるが、念のために安全評価の妥当性を確認するための調査を行う必要がある。そこで、国が、空間線量率が比較的高い仮置き場における災害廃棄物の汚染状況の念のた

めの確認、焼却処理に伴う主灰、飛灰、排ガス、排水等の放射性物質の濃度測定、最終処分場における敷地境界での空間線量率や放流水の測定等を行うこととする。

また、津波堆積物(ヘドロ)については、周辺の土壌と同程度の汚染である ことが予想されるが、念のために放射性物質の濃度測定を行い、現状を把握す る。

7. 電離放射線障害防止規則について

作業者の被ばく量が合理的に達成できる限り低くなるようにするため、また、 災害廃棄物の焼却、埋立処分、再生利用等を適切に行うため、焼却・溶融処理 施設の排気、管理型最終処分場の排水等について適切かつ定期的な放射能濃度 の測定を行うとともに、必要に応じて関係者が適切な対策を講じることが必要 である。また、焼却灰等管理者は、焼却灰を一時保管する量や放射能濃度を記 録する。

また、災害廃棄物の破砕されたコンクリート等が電離則第2条第2項に定める放射性物質に該当する場合には、路盤材等として受け入れる事業場においても、電離則が適用される可能性があることに留意する。

なお、電離則第2条第2項で定める放射性物質の濃度下限値近傍の焼却灰等を扱う場合には、「原子力安全委員会決定」の「2.処理・輸送・保管について」に鑑み、作業者の被ばくを測定・管理することが望ましい。

さらに、作業者の受ける線量が1mSv/年を超える場合等において、放射線量を合理的に達成できる限り低くなるよう、災害廃棄物の処理開始後半年を目途として、その時点で焼却灰等から検出される放射能濃度等に基づき、焼却灰等の放射能濃度と作業者の受ける放射線量の関係等を再評価する。

8. 避難区域及び計画的避難区域の災害廃棄物の処理方法について

浜通り及び中通りで実施した災害廃棄物の仮置き場周辺の空間線量率と災害 廃棄物の放射能濃度の調査の結果、空間線量率が低い地域においては災害廃棄 物の放射能濃度のばらつきも小さくなっている。また、放射性物質による災害 廃棄物の汚染経路は、大気中に排出された放射性物質の降下によるものと考えられることから、今回の調査で得られた廃棄物の放射能濃度と空間線量率との関係は、福島県下の他の地域にも当てはまると考えられる。

このため、避難区域及び計画的避難区域の中でも、その外側と同程度の空間線量率と推定される地域については上記1~7と同様の方法での処理が可能と考えられる。このような地域の災害廃棄物の処理を円滑に進めるための処理計画の策定に資することを目的として、国が、空間線量率の詳細調査及び災害廃棄物の存在形態に関する予備調査を実施する必要がある。

一方、空間線量率が高い地域の災害廃棄物の処理方法については、今後検討が必要である。これらの地域にあっては、今後、災害廃棄物の種類毎に濃度測 定調査を行い、現状を把握しつつ改めて処理方法を検討することとする。

9. その他

(1) モニタリングについて

処理の安全性を確認するため、処理施設周辺の空間線量率や施設周辺の地下水、処理施設から排出される排ガス、排水等などのモニタリングを継続して行うことが必要である。今後、国、県、市町村がそれぞれの立場でモニタリングを行うことが必要と考えられるが、できるだけ統一的な方法でモニタリングを行うことが望ましい。このため、早急にモニタリング技術に関する知見を収集し、モニタリングの方法を検討することが必要である。

なお、当面、市町村が、災害廃棄物を焼却する際には、なるべく早い段階で 主灰及び飛灰の放射性セシウム濃度を測定する。

(2) 施設の管理主体等について

今回の検討に当たっては、主として、市町村が災害廃棄物を自らの焼却施設や最終処分場で処理することを想定したが、市町村が民間業者に処理を委託して当該民間業者が管理する処理施設で処理する場合もある。放射性物質による汚染のおそれのある災害廃棄物の処理に当たっては、長期的な管理が必要となる可能性が高いことに鑑み、委託処理の場合に、委託者である市町村や施設の指導監督権限を有する県又は政令市の果たすべき役割について、さらに検討が必要である。

(参考1) 原子力安全委員会による当面の考え方

原子力安全委員会が6月3日に公表した「東京電力株式会社福島第一原子力発電所事故の影響を受けた廃棄物の処理処分等に関する安全確保の当面の考え方について」で示された考え方の概要は、次のとおり。

- ① リサイクルする場合、再利用して生産された製品は、市場に流通する前に クリアランスレベルの設定に用いた基準 $(10\,\mu\,\mathrm{Sv}/\mathrm{F})$ 以下になるよう、放射性物質の濃度が適切に管理されていることを確認する必要がある。
- ② 処理・輸送・保管に伴い、周辺住民の受ける線量が1 mSv/年を超えないようにするとともに、処理施設等の周辺環境の改善措置を併せて行うことにより、周辺住民が受ける放射線の量を抑制するように特段の配慮が必要である。
- ③ 処理等を行う作業者が受ける線量についても可能な限り1mSv/年を超えないことが望ましいが、比較的高い放射能濃度の物を取り扱う工程では、「電離放射線障害防止規則」(昭和47年労働省令第41号。以下「電離則」という。)を遵守する等により、適切に作業者の受ける放射線の量の管理を行う必要がある。
- ④ 処分の安全性は、処分施設の管理期間終了以後、周辺住民の受ける線量が、 基本シナリオに基づく評価において 10μ Sv/年以下であり、変動シナリオに 基づく評価が 300μ Sv/年以下であるとの「めやす」に基づき判断する。

(参考2) 空間線量率との関係

空間線量率と災害廃棄物の放射性セシウム濃度の関係について、既存の調査結果から、次のように考えられる。

(1)空間線量率が比較的低い場合

仮置場の災害廃棄物から $1 \text{ m地点での空間線量率が低い場合は、災害廃棄物の放射性セシウム濃度が比較的低く、ばらつきも小さい。例えば、空間線量率が <math>0.2\,\mu$ Sv/h 程度の仮置場では、災害廃棄物の放射性セシウム濃度は概ね 800Bq/kg 以下であった。

災害廃棄物だけを焼却した場合、主灰の放射性セシウム濃度は災害廃棄物のそれと比較して最大でも10倍程度と考えられるので、主灰の平均的な放射性セシウム濃度は8,000Bq/kg以下となる可能性が高い。生活系の廃棄物などと混焼した場合は、さらに濃度が低くなる可能性がある。

(2) 空間線量率が比較的高い場合

仮置場の災害廃棄物から 1 m地点での空間線量率が比較的高い場合は、災害廃棄物の放射性セシウム濃度のばらつきが大きい。例えば、 1 m 地点での空間線量率が $0.8\,\mu$ Sv/h 程度であるときに災害廃棄物の放射性セシウム濃度の平均的な値は 3,000Bq/kg 程度と推定されるが、6,000Bq/kg 程度にまでばらついている。

このため、焼却した場合の主灰の放射性セシウム濃度のばらつきも大きい ことが予想される。

(参考3) 安全評価のための計算の例

(1) 焼却による周辺居住者への影響

焼却に関する安全評価では、次の3つのケースを想定した。

	焼却量	焼却量に占める災	排ガスから
		害廃棄物の割合	の除去率
併用ケースA	150 トン/日	2 7 %	9 9 %
併用ケースB	390 トン/日	2 7 %	99%
仮設炉ケース	100 トン/日	1 0 0 %	9 9 %

これらのケースのうち、併用ケースAが最も周辺居住者への影響が少なく、 併用ケースBと仮設炉ケースは同様のレベルとなったので、後者(併用ケースBと仮設炉ケース)についての周辺居住者に対する影響の計算結果の概要を示す。

- ① 焼却炉から放出された粉じんからの被ばく
 - ・単位廃棄物中濃度当たりの子どもの被ばく線量は、 $0.0000054~\mathrm{mSv/y}$ per Bq/g
 - ・例えば、3,000Bq/kg(3 Bq/g)の災害廃棄物を焼却した場合の子どもの年間被ばく線量は、0.000016 mSv/y
 - ・これは原子力安全委員会の目安である1 mSv/y を下回っている。
 - 注)ここで用いた 3,000 Bq/kg(3 Bq/g)は、既存の調査結果から、仮置場の災害廃棄物から $1 \, \mathrm{m}$ 地点での空間線量率が $0.8 \, \mu$ Sv/h 程度であるときに災害廃棄物の放射性セシウム濃度の平均的な値として推定されるものである。(ただし、同じ空間線量率であっても災害廃棄物の放射性セシウム濃度にはばらつきが大きいことに注意が必要。)
- ② 粉じんが沈着した土壌からの被ばく
 - ・(安全を見て) 10 年間の焼却に伴うダストが周辺土壌に全て沈着すると仮定すると、単位廃棄物中濃度当たりの子どもの被ばく線量は、0.00048 mSv/y per Bq/g

- ・例えば、3,000Bq/kg(3 Bq/g)の災害廃棄物を焼却した場合の子どもの年間被ばく線量は、0.0014 mSv/y
- ・これは原子力安全委員会の処理に関する目安である 1 mSv/y 及び処分 に関する目安である 0.01mSv/y ($10 \mu \text{ Sv/y}$) を下回っている。

(2) 埋立処分における作業者への影響

8,000 Bq/kg(8 Bq/g)の廃棄物をそのまま埋立処分する場合の作業者の被ばく線量は 0.78mSv/y と計算され、原子力安全委員会による作業者の目安である 1 mSv/y を下回っている。このように、8,000 Bq/kg は作業者の安全も確保される濃度レベルであり、原子力災害対策本部において別途検討された上下水処理等副次産物の取扱いと同じである。

なお、この値は、1日8時間、年間 250 日の労働時間のうち半分の時間 を廃棄物のそばで作業すること、1日の作業の終了時の覆土である即日覆土を行わず、中間覆土のみ行うことを仮定して計算されている。

廃棄物のそばでの作業時間を減らせば、被ばく量を削減することができる。また、埋め立てた後にすぐに覆土を行えば、埋め立てられた廃棄物からの被ばく量を削減することができる。

(3) 埋立処分跡地の利用

① 覆土がない跡地での居住

埋立処分の終了時には 50cm 以上の覆土がなされるが、併用ケース B の 焼却灰の埋立終了後に覆土と焼却灰が混合された場合を想定し、その混合 土壌の上に居住した場合の被ばく線量を計算すると、

- ・単位廃棄物中濃度当たりの子どもの被ばく線量は、0.31 mSv/y per Bq/g
- ・3,000Bq/kg (3 Bq/g) の災害廃棄物を焼却して埋め立てた場合の子どもの年間被ばく線量は、0.93 mSv/y

・これは原子力安全委員会の処分に関する目安である $0.01 \mathrm{mSv/y}$ $(10\,\mu\ \mathrm{Sv/y})$ を上回っている。

② 覆土を保った公園利用

- ・併用ケース B の焼却灰の上に 50 cm の覆土のある公園を年間 200 時間 利用すると想定すると、子どもの単位廃棄物中濃度当たりの被ばく線量 は、0.00016 mSv/y per Bq/g
- ・例えば、3,000Bq/kg(3 Bq/g)の災害廃棄物を焼却して埋め立てた場合の子どもの年間被ばく線量は、0.00048 mSv/y
- ・これは原子力安全委員会の処分に関する目安である $0.01 \mathrm{mSv/y}$ $(10\,\mu\ \mathrm{Sv/y})$ を下回っている。

(4) 再生利用

- ① コンクリート処理を行う作業者への影響
 - ・コンクリートの再生利用のための作業を年間 1,000 時間行う場合、単位廃棄物中濃度当たりの被ばく線量は、0.033mSv/y per Bq/g
 - ・例えば、3,000Bq/kg(3 Bq/g)のコンクリートを再生利用する場合の作業者の年間被ばく線量は、0.099mSv/y
 - ・これは原子力安全委員会の処分に関する目安である 1mSv/y を下回っている。

② コンクリートの壁材利用

- ・再生利用されたコンクリートを壁材等に用いて建設された建物に年間 6,000 時間居住すると想定すると、単位廃棄物中濃度当たりの子どもの 被ばく線量は、0.11 mSv/y per Bq/g
- ・例えば、3,000Bq/kg(3 Bq/g)のコンクリートを再生利用した壁材等を用いた建物の場合の子どもの年間被ばく線量は、0.33 mSv/y

- ・これは原子力安全委員会の処分に関する目安である $0.01 \mathrm{mSv/y}$ ($10\,\mu$ Sv/y) を上回っている。
- ③ 土木資材としての公園での覆土を伴った利用
 - ・コンクリートなどを 50 cm の覆土の下に土木資材として利用した公園を年間 200 時間利用すると想定すると、子どもの単位廃棄物中濃度当たりの被ばく線量は、0.000060 mSv/y per Bq/g
 - ・例えば、3,000Bq/kg(3 Bq/g)の災害廃棄物を利用した場合の子どもの年間被ばく線量は、0.00018 mSv/y
 - ・これは原子力安全委員会の処分に関する目安である $0.01 \mathrm{mSv/y}$ $(10\,\mu\ \mathrm{Sv/y})$ を下回っている。

(参考4) 放射線の遮蔽について

放射線の遮へい方法としては、例えば、厚さ 15cm のコンクリート壁で覆う と放射線線量当量率が 10 分の 1、30cm の覆土を行うと 40 分の 1 程度になる とされている。

出典:埋設処分における濃度上限値評価のための外部被ばく線量換算係数(2008 年、日本原子力研究開発機構)

(参考5) 一時保管における居住地域等の敷地境界からの距離

別途検討された上下水処理等副次産物の一時保管に関しては、下記の表に従 って、居住地域等の敷地境界から適切な距離をとることとされている。この距 離は、毎日大量の汚泥を一時保管することを想定した場合のものであり、災害 廃棄物の焼却に伴って発生する主灰及び飛灰の一時保管の場合にそのまま適 用されるものではないが、後者の場合に必要とされる距離が計算されるまでの 間、下表の数字に従えば十分に安全なので、参考として示すこととする。

表		
	第一欄	第二欄
	敷地境界からの距離の目安	セシウム 134 及びセシウム 137 の合計
	70m	100,000Bq/kg 以下
	50m	70,000Bq/kg 以下
	40m	60,000Bq/kg 以下
	20m	40,000Bq/kg 以下
	6m	20,000Bq/kg 以下
	制限なし	8,000Bq/kg 以下

平成 23 年 6 月 27 日 環 境 局

23区清掃工場の放射能測定結果を受けた埋立処分場における対応について

東京二十三区清掃一部事務組合(以下、「一組」)では、23区の焼却処理で発生する灰等の放射能濃度測定を、別紙のとおり実施しました。(別紙、一組プレス資料参照)

23区で発生する焼却灰については、都の管理する埋立処分場で処理していますが、国は、福島県以外の地域における放射性物質を含む一般廃棄物の処理に対する基準を示していません。このため、都は、環境省と調整した結果、23区内の清掃工場から発生する焼却灰の処分方法として、当面、次のとおり取り扱うこととしました。

国に対して、福島県以外の地域において、放射性物質を含む焼却灰の処理の取扱いの基準を早急に示すことを、本日、要請します。

また、多摩地域の市町村に対しては、焼却灰等の放射能濃度を測定するよう要請します。

焼却灰の当面の取扱い

- 国により、飛灰の取扱方法が定められるまでの間、以下のように取り扱うこととする。 78,000 ベクレル/ kg を超える飛灰については、一般廃棄物最終処分場(管理型最終処分場)に場所を定めて、一組が一時保管場所を整備し、そこに一時保管する。
 - 一時保管の方法は、「福島県内の災害廃棄物の処理の方針」(平成23年6月23日) に準拠する。

なお、一時保管場所が整備されるまでの間は、清掃工場内に保管する。

- イ 8,000ベクレル/kg以下の飛灰については、一般廃棄物最終処分場(管理型 最終処分場)に、主灰と分け、場所を定めて、都が埋立処分する。
- 一時保管場所及び埋立付近での空間放射線量及び埋立地の排水のモニタリングを、都 が実施する。
- なお、主灰については8,000ベクレル/kg以下なので、従前どおり一般廃棄物 最終処分場(管理型最終処分場)において、都が埋立処分する。
 - (注) 主灰とは、燃えがらをいう。

飛灰とは、ろ過式集じん器などで捕集した排ガスに含まれているダスト(ばいじん)をいう。

- (参考)「福島県内の災害廃棄物の処理の方針」に定める一般廃棄物最終処分場(管理型最終処分場) での一時保管の基準
 - 1 埋立場所を他の廃棄物と分け、埋立場所を記録する。
 - 2 土壌(ベントナイト等)で 30 c m程度の隔離層を設けたうえで、耐水性材料で梱包等した飛灰を置く。
 - 3 雨水浸入防止のための遮水シート等で覆う、あるいはテントや屋根等で被覆する。
 - 4 即日覆土を行う。

平成23年6月27日東京二十三区清掃一部事務組合

放射能測定結果及び焼却飛灰の一時保管について

当組合では、3月11日に発生した東日本大震災による東京電力福島第一原子力発電所の事故による東京23区内の一般廃棄物処理における影響を確認するため、焼却処理で発生する灰等の放射能濃度調査を実施しました。

その結果は別紙「焼却灰等の放射能測定結果」のとおりです。

また、国は、福島県以外の地域における放射性物質を含む一般廃棄物の処理に対する基準を示していません。このため環境省と都が調整した結果に基づき、都内の清掃工場から発生する焼却灰の処理方法として、当面、下記のとおり取り扱うこととしました。

当組合では、今後もモニタリングを継続して行い、ホームページで公表します。

記

1 8,000Bq/kg を超える飛灰^(注) については、東京都の管理する一般廃棄物最終処分場(管理型最終処分場)に場所を定めて一時保管する。

一時保管の方法は、「福島県内の災害廃棄物の処理の方針」(平成23年6月23日) に準拠する。

なお、一時保管の準備が整うまでの間、8,000Bq/kg を超える飛灰については、 当該清掃工場灰貯留槽等に保管する。

- 2 8,000Bq/kg以下の飛灰については、東京都の管理する一般廃棄物最終処分場(管理型最終処分場)に場所を定めて主灰と分けて、埋立処分する。
- 3 一時保管の期間は、国による新たな飛灰の取扱方法が定まるまでとする。
- 4 国に対し、新たな飛灰の取扱方法の策定を要請する。

以上

(注) 飛灰とは、ろ過式集じん器などで捕集した排ガスに含まれているダスト(ばいじん)をいう。 *主灰については、8,000 Bq/kg 以下であるので、「福島県内の災害廃棄物の処理の方針」に基づいて埋立処分する。

(問い合わせ先) 施設管理部

塚越 電話 03-6238-0704 大塚 電話 03-6238-0745 森 電話 03-6238-0704

焼却灰等の放射能測定結果

表 1 主灰の放射能濃度測定結果

測定機関 中外テクノス (株) 報告日6月27日 試料採取期間 平成23年6月16日から24日

測定方法:緊急時における食品の放射能測定マニュアル

(平成14年3月、厚生労働省医薬局食品保健部監視安全課)

単位:Bq/kg

	主灰						
施設名	放射性 ヨウ素131	放射性 セシウム134	放射性 セシウム137	放射性 セシウム合計			
中央清掃工場	不検出	75	85	160			
港清掃工場	不検出	53	60	113			
北清掃工場	不検出	119	131	250			
品川清掃工場	不検出	99	106	205			
目黒清掃工場	不検出	73	82	155			
大田清掃工場	不検出	94	104	198			
多摩川清掃工場	不検出	162	173	335			
世田谷清掃工場*	_	_	-	_			
千歳清掃工場	不検出	101	109	210			
渋谷清掃工場*	_	_	-	_			
杉並清掃工場	不検出	61	68	129			
豊島清掃工場*	-	_	1	_			
板橋清掃工場	不検出	241	262	503			
光が丘清掃工場	不検出	134	146	280			
墨田清掃工場	不検出	186	203	389			
新江東清掃工場	不検出	149	169	318			
有明清掃工場	不検出	47	52	99			
足立清掃工場	不検出	334	368	702			
葛飾清掃工場	不検出	610	680	1290			
江戸川清掃工場	不検出	280	312	592			
破砕ごみ処理施設*	_	_	_				

※使用測定器: 仏キャンベラ社製 ゲルマニウム半導体検出器 7500SL

^{*}の清掃工場等はプラントの特性から主灰が排出されない。

[○] 主灰とは燃やしたごみの燃えがらのことで、焼却炉の底から排出される灰をいう。

表 2 飛灰の放射能濃度測定結果

測定機関 中外テクノス (株) 報告日6月27日 試料採取期間 平成23年6月16日から24日 測定方法:緊急時における食品の放射能測定マニュアル (平成14年3月、厚生労働省医薬局食品保健部監視安全課)

単位:Bq/kg

	飛灰								
施設名	放射性 ヨウ素131	放射性 セシウム134	放射性 セシウム137	放射性 セシウム合計					
中央清掃工場	25	966	1020	1986					
港清掃工場	不検出	872	955	1827					
北清掃工場	95	1540	1620	3160					
品川清掃工場	不検出	643	709	1352					
目黒清掃工場	不検出	2000	2180	4180					
大田清掃工場	30	2920	3110	6030					
多摩川清掃工場	不検出	1480	1600	3080					
世田谷清掃工場	不検出	1480	1630	3110					
千歳清掃工場	不検出	1420	1520	2940					
渋谷清掃工場	不検出	471	510	981					
杉並清掃工場	不検出	1920	2100	4020					
豊島清掃工場	11	477	523	1000					
板橋清掃工場	不検出	1270	1360	2630					
光が丘清掃工場	不検出	2210	2400	4610					
墨田清掃工場	不検出	1440	1560	3000					
新江東清掃工場	不検出	2320	2530	4850					
有明清掃工場	不検出	1810	1950	3760					
足立清掃工場	不検出	2050	2230	4280					
葛飾清掃工場	不検出	3180	3430	6610					
江戸川清掃工場	不検出	4700	5040	9740					
破砕ごみ処理施設	不検出	298	324	622					

※使用測定器: 仏キャンベラ社製 ゲルマニウム半導体検出器 7500SL

○ 飛灰とはろ過式集じん器などで捕集した排ガスに含まれているダスト(ばいじん)の ことをいう。

表3 溶融スラグの放射能濃度測定結果

測定機関:日立協和エンジニアリング (株)

報告日 6月27日

試料採取期間 平成23年5月23日から6月21日

(※ 震災前生成分は、3月11日以前に生成された溶融スラグを、試料採取期間に採取し測定した。)

測定方法:緊急時における食品の放射能測定マニュアル

(平成14年3月、厚生労働省医薬局食品保健部監視安全課)

単位:Bq/kg

施設名	放射性 ヨウ素131		放射性 セシウム134			时性 ム137	放射性 セシウム合計	
旭 政石	震災前 生成分	震災後 生成分	震災前 生成分	震災後 生成分	震災前 生成分	震災後 生成分	震災前 生成分	震災後 生成分
品川清掃工場	不検出	不検出	不検出	不検出	不検出	16	不検出	16
世田谷清掃工場	不検出	不検出	不検出	34	不検出	54	不検出	88
葛飾清掃工場	不検出	不検出	不検出	30	不検出	31	不検出	61
足立清掃工場	不検出	不検出	不検出	24	不検出	22	不検出	46
中防灰溶融施設	不検出	不検出	不検出	17	不検出	不検出	不検出	17

※使用測定器: SEIKO EG&G社製ゲルマニウム半導体検出器 GEM-35200-P

○溶融スラグとは、おおむね1,200 度以上の高温で焼却灰を溶融し、冷却・固化してできるガラス質の物質をいう。

【緊急測定】

本測定は、別紙で得られた結果に対して清掃工場の安全性を緊急に確認する必要が生じたため、GM 式サーベイメータを用いて行ったものです。

測定結果はシンチレーション式サーベイメータによるものと異なります。

なお、今後はシンチレーション式サーベイメータにより測定を行い、当組合のホームページで公開してまいります。

清掃工場の敷地境界及び工場内灰処理設備付近での空間放射線量率測定結果

单位: u Sv/h

₩r≑n kr	油中口		敷地			単位: μ Sv/h 工場内
施設名	測定日	東	西	南	北	灰処理設備等
中央清掃工場	6月26日	0.13	0.11	0.20	0.13	$0.07 \sim 0.11$
港清掃工場	6月25日	0.13	0.17	0.14	0.20	$0.09 \sim 0.23$
北清掃工場	6月25日	0.12	0.14	0.12	0.14	$0.06 \sim 0.22$
品川清掃工場	6月25日	0.20	0.16	0.14	0.17	$0.15 \sim 0.44$
目黒清掃工場	6月26日	0.14	0.17	0.13	0.10	$0.16 \sim 0.46$
大田清掃工場	6月25日	0.22	0.16	0.22	0.18	$0.11 \sim 0.30$
多摩川清掃工場	6月26日	0.18	0.15	0.18	0.12	$0.11 \sim 0.16$
世田谷清掃工場	6月26日	0.16	0.12	0.10	0.20	$0.12 \sim 0.19$
千歳清掃工場	6月26日	0.18	0.15	0.11	0.20	$0.08 \sim 0.15$
渋谷清掃工場	6月26日	0.15	0.15	0.17	0.16	$0.08 \sim 0.13$
杉並清掃工場	6月26日	0.15	0.15	0.14	0.15	$0.10 \sim 0.15$
豊島清掃工場	6月25日	0.11	0.13	0.10	0.11	$0.08 \sim 0.10$
板橋清掃工場	6月26日	0.16	0.21	0.20	0.15	$0.08 \sim 0.09$
光が丘清掃工場	6月26日	0.21	0.15	0.16	0.16	$0.10 \sim 0.26$
墨田清掃工場	6月25日	0.25	0.14	0.14	0.18	$0.12 \sim 0.32$
新江東清掃工場	6月26日	0.14	0.16	0.14	0.19	$0.09 \sim 0.48$
有明清掃工場	6月26日	0.12	0.11	0.14	0.15	$0.11 \sim 0.14$
足立清掃工場	6月25日	0.21	0.17	0.15	0.15	$0.07 \sim 0.40$
葛飾清掃工場	6月25日	0.28	0.23	0.20	0.15	$0.12 \sim 0.68$
江戸川清掃工場	6月25日	0.21	0.23	0.24	0.24	$0.07 \sim 0.16$
破砕ごみ処理施設	6月26日	0.13	0.09	0.11	0.16	$0.09 \sim 0.15$

[※] 使用測定器: 米ThermoScientific社製 GM式サーベイメータ B20-ER(γ線測定用フィルター装着)

測定機関:(株)伊藤公害調査研究所

報告日 6月27日

試料採取期間 平成23年6月25日から26日

[※] 測定値は1回10秒×3回測定の平均値

[※] 測定点の高さは1m

[※] 測定値は気象条件により変わります。